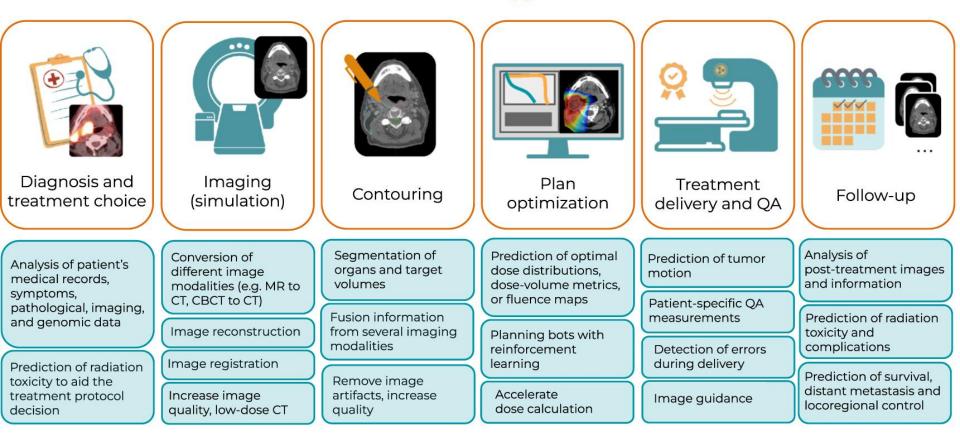


Computational Imaging Group for MR Therapy and Diagnostics


Klinische implementatie van Al THEMADAG 2024/Catharina Ziekenhuis

28 maart 2024 – Mark Savenije m.h.f.savenije@umcutrecht.nl

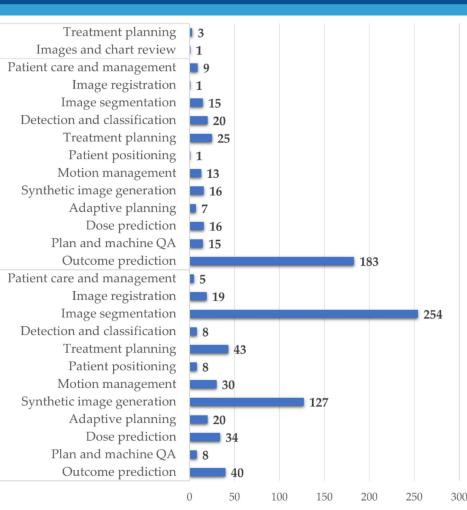
Department of Radiotherapy — Computational Imaging Group — UMC Utrecht

: 😒 - WMC Witnedat

Classical radiotherapy workflow

Machine learning applications

https://iopscience.iop.org/article/10.1088/1 361-6560/ac678a


Al applications for RT research papers (2018-2022)

Q

ML

DL

- 1. Contouring/segmentation
- 2. Outcome prediction
- 3. Synthetic CT's from MR/CBCT
- 4. Treatment planning

https://doi.org/10.3390/app12073223

Available commercial AI applications

- 1. Segmentation (including train on your own data)
- 2. Synthetic CT's from MRI and CBCT
- 3. Image reconstruction

Slide by Matteo Maspero Deep learning-based segmentation #19 Products <2024-01

		Anatomical location							Retrain	Cloud/Stand-al	Regulatory	
Supplier	Product name	Brain	HN	Thorax	Abd	Pelvis	Others	Target?	on your data?	one/TPS	Approval	
<u>Carina AI</u>	INTContour	СТ	СТ	СТ	СТ	CT male			Y	C/S	FDA	
Ever Fortune AI	RT suite		СТ			СТ	All			S	FDA	
GE Healthcare	Auto Segmentation						All			S/C	FDA	
Hura Imaging	DV.Target	СТ	СТ	CT+breast	СТ	СТ			Y	S/C	FDA	
Limbus AI	Limbus Contour	CT, MRI	CT+nodes	CT+breast	СТ	CT,MRI,CBCT		CTV		S (C on demand)	FDA, CE	
Manteia	AccuContour AccuLearning	СТ	СТ	СТ		СТ		CTV	Y	S	FDA, CE	
MEDCOM	Prosoma DART	СТ	CT							C/S	FDA, CE	
MIM Software	Contour ProtégéAI+	CT+nodes	CT+nodes	CT+nodes	СТ	CT,MRI prost				C/S/TPS	FDA, CE	
Mirada	DLC Expert	СТ	СТ	СТ	СТ	СТ				C/S/TPS	FDA, CE	
MVision AI	Mvision AI	CT, MRI	CT+nodes	CT+breast +nodes	СТ	CT(fe/male+nodes) MRI prost (2)	All, bones	CTV		C/S/TPS	FDA, CE	
<u>Philips</u>	Auto contouring					MRI prost				S	FDA, CE	
<u>Quantaras</u>	Contour Companion		СТ	СТ						С	FDA	
RadFormation	<u>AutoContour</u>	CT,MRI	CT+nodes	CT+nodes	СТ	CT+ nodes, MRI				C/TPS	FDA, CE	
RaySearch	DL models	СТ	СТ	CT+breast +nodes	СТ	СТ			(Y)	TPS	CE	
Siemens Healthineers	AI-Rad Companion DirectORGANS	CT,MRI	CT+nodes	CT+breast	СТ	CT,MRI prost				C/S/TPS C/S/TPS	FDA, CE	
Spectronic Medical	MRI Planner	MRI	MRI			MRI				C/S integrated MRI	FDA, CE	
Synaptiq	Media	СТ	CT	CT+breast	СТ	СТ				С		
Therapanacea	Annotate, AdaptBox	CT,MRI	CT+nodes	CT+breast	CT,MRI	CT,MRI(2), CBCT male	heart			C/S	FDA, CE	
Vysioner	<u>Vbrain</u>	MRI						only		S	FDA	

Only for the Chinese market: AiContour, <u>Linking MED</u>; CT-based pelvis, thorax

C: cloud-based; S: standalone solution TPS: integrated in at least one treatment planning system

Synthetic CT's from MR/CBCT **MR-only radiotherapy/CBCT-based adaptive radiotherapy**

- Four commercial solutions •
 - 2 MRI vendors integrated, standalone/cloud Brain, pelvis, head-and-neck
 - •

	Company	Name	Sequence	Anatomical site	Integrated on scanner	Certification		
	PHILIPS	<u>MRCAT</u>	T1w GRE + Dixon	Pelvis, brain, head-and-neck	Y	CE FDA 2016-03	Deep	
		<u>MRI</u> <u>Planner</u>	T2w T1w GRE	pelvis + del OARs brain, head-and-neck	cloud or on-site standalone or post-processing suite	CE 2016-06	learning since 2019	
	SIEMENS Healthineers	<u>Syngo.via.</u> syntheticC <u>T</u>	Multiple sequences T1w GRE + Dixon	brain pelvis	~ post-processing in a separate suite from the scanner	FDA, CE 2018-01	Vendor re-designed Their	
	アレビス アンドロ THERAPANACEA Reinventing cancer care through Al	<u>MR-Box</u>	T1w GRE T1w GRE, T2	Brain Pelvis	N, cloud or on-site	CE, FDA 2021-2022	certified solutions	
		<u>AdaptBox</u>	CBCT	Prostate	standalone	CE 2023, FDA pending	NY SUS	

Synthetic CT's from CBCT or MR

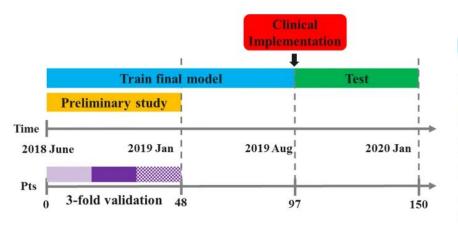
Inherently much more difficult to accept in clinic:

- You cannot check whether is correct (esp. for MRI based sCT's)
- No tools to adapt sCT's

Very different than for auto contouring application:

- We are used to start with some base delineation (atlas based e.g.)
- Software is highly designed to make and adapt contours

https://arxiv.org/abs/2403.08447


UMC Groningen, Radboud UMC, Eindhoven University of Technology, Wageningen Research, UMC Utrecht, Amsterdam UMC, Maastricht University, TU Delft

UMCU segmentation history

While developing the **MR-only workflow** for prostate (2016 onwards):

- 1. Substitute for planning CT (MR sequence, DL pseudo CT's (2017), MRCAT)
- 2. Seemed logical to delineate on source images of MRCAT (IP/W/F), 2018

RESEARCH

Savenije et al. Radiation Oncoloav

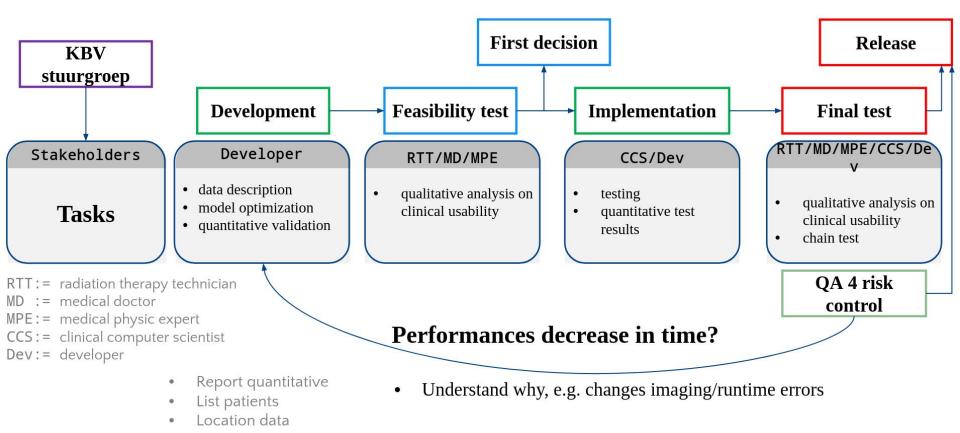
https://doi.org/10.1186/s13014-020-01528-0

Open A

Radiation Onco

Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy

(2020) 15:104


Mark H. F. Savenije^{1,2†}, Matteo Maspero^{1,2*†}, Gonda G. Sikkes¹, Jochem R. N. van der Voort van Zyp¹, Alexis N. T. J. Kotte¹, Gijsbert H. Bol¹ and Cornelis A. T. van den Berg^{1,2}

Locally developed segmentation applications:

- Group effort! Set up a group of people with different roles: RTT's, clinical image processing department, clinical computer scientists, medical physicists, medical doctors, developers. Participation!
- 2. Make **inventory of wishes/requests**, can you buy application?
- 3. Training with your **own data**, contouring guidelines, planning templates (mostly better results than commercial solutions)
- 4. MDR/QMS
- 5. Computing infrastructure, integration and deployment
- 6. **Instruction** for RTT's
- 7. Now focus on **adaptive** RT (e.g. MRLinac) **speed constraints!**

Software life cycle

Medical Device Regulation (MDR) 2017/745

Al application: medical device? Medical device definition:

Any instrument, apparatus, appliance, **software**, implant, reagent, material or other article **intended by the manufacturer** to be used, alone or in combination, for human beings for one or more of the following specific medical **purposes**:

- 1. Diagnosis, prevention, monitoring, prediction, prognosis, treatment, compensation or alleviation of disease, injury or disability
- 2. Investigate, replacement or modification of anatomy or a physiological or pathological process

If a software app has an **influence** on patient treatment, it is a **medical device**!

MDR and hospitals

Manufacturing, modifying and using devices in-house **is allowed**, **no CE** marking needed, but:

- Software is not transferred to another legal entity
- Show and document that other commercial software is not available for the target patient group's specific needs
- Publicly declare that the software meets the general safety and performance requirements (**GSPR**) <u>Openbare MDR verklaring UMC Utrecht</u>
- Software is developed and used under an appropriate quality management system (QMS)

Quality Management System (QMS)

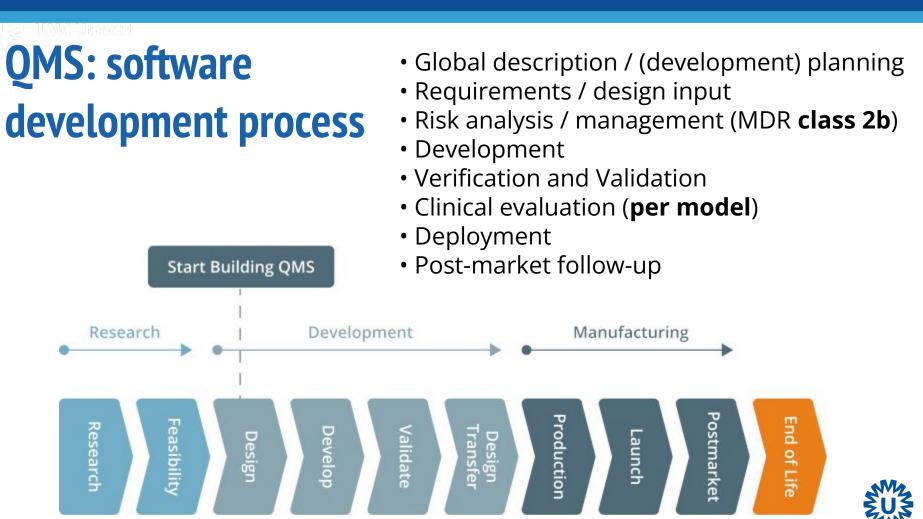
QMS is/seems like a lot a work, but:

- Provides risk, quality, development procedures
- Supplies all kinds of forms
- Stores risk, verification, validation, test data
- Secures all kinds of norms
- OPTIONAL: A QMS can be certified
 - Guaranteed **compliance** with norm
 - **Incentive** to keep following the formal procedures
 - Easier **collaboration** with industrial partners
- UMCU radiotherapy QMS operational since 2017 and ISO 13485 certified since 2019
 ¹³

QUALITY MANAGEMENT

AI/ML applications w.r.t. QMS

- QMS: No specific AI / DL norms available
- Not a "regular" software development process



MDR (2021) implications for UMCU

- Change delineation software (inhouse developed VolumeTool) to MIM
- Atlas based solution (ABAS/Elekta) will NOT be CE marked
- AI based segmentation solutions from MIM underperformed, and/or posed significant changes in planning templates (local scanners, local delineation guidelines, local etc.)

2019 - 2022:

https://www.simplergms.com/medical-device-guality-management-system/

DeepMedic's EU MDR Document

Contents

- Contents
- I DeepMedic
- I Development Planning
- 1 Project sheet
- 2 Risk management plan
- 3 Clinical evaluation plan
- **II** Design input
- 4 General safety and performance requirements checklist
- 5 Regulations, Standards and Guidances Overview
- 6 Qualification and classification
- 7 Software Product Requirement Description

IIIRisk management

- 8 Risk management report
- 9 Risk assessment sheet
- 10 E-labeling requirements
- 11 Adverse events search
- **IVDesign** output
- 12 Software system requirement specification 13 Software architecture design
- V Review

14 Design review 20220811

- 15 Model review
- 16 Design review 20240111
- 17 Release meeting 20240312
- Printed copies are uncontrolled

VITesting
18 Verification and validation test plan
19 Test protocol
20 E-labeling review report
VILabeling
21 Configuration management report
22 Release notes
23 Administrator manual
24 Instructions for use

VIHost-market 25 Software maintenance plan 26 Post-market surveillance plan IXRegulatory 27 Declaration of conformity X Clinical evaluation 28 Qualification of clinical evaluator 29 Clinical evaluation report

30 Model specific evaluation 31 Clinical evaluation report of Prostate_MRI 32 Clinical evaluation report of Body_CT 33 Clinical evaluation report of Breast_CT 35 Clinical evaluation report of HeadNeck_CT 36 Clinical evaluation report of Prostate_CT 37 Clinical evaluation report of Prostate_T2 (MRI) 39 Analysis script

II Models

XIProstate_MRI 40 Software Product Requirement Specification 41 Risk management

rinted copies are uncontrolled

42 Test report	121
XILungOes_CT	123
43 Software Product Requirement Specification	124
44 Risk management	126
45 Test report	127
XIHody_CT	129
46 Software Product Requirement Specification	130
47 Risk management	132
48 Test report	133
XIEreast_CT	135
49 Software Product Requirement Specification	136
50 Risk management	138
51 Test report	139
X WeadNeck_CT	141
52 Software Product Requirement Specification	142
53 Risk management	144
54 Test report	145
X Wirostate_CT	147
55 Software Product Requirement Specification	148
56 Risk management	150
57 Test report	151
XWHain_CT	153
58 Software Product Requirement Specification	154
59 Risk management	156
60 Test report	157
X WHidstate_T2	159
61 Software Product Requirement Specification	160
62 Risk management	162
63 Test report	163
	3 of 165

Clinical deployment UMCU: components

Desktop nodes (end users)

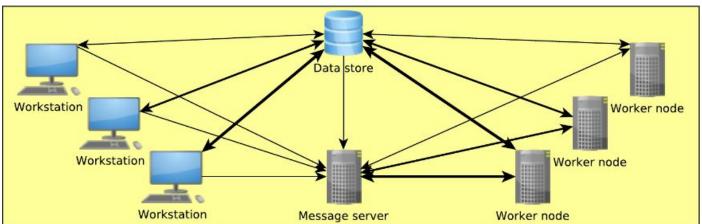
Start DL procedure
MIM

Research software (VT)

Receives DL results

MIM / Research software

- Controlled environment
- No direct access to DL networks

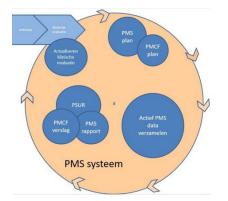

Communication node

Connects

- Storage node
- Worker nodes
- Desktop nodes
- RabbitMQ
- Platform independent
- Messaging and queueing mechanism

Worker nodes

- Servers running the DL networks
- Uses VMs / containers (LXC)
- Resource sharing (GPU)
- Dedicated environment for each DL network
- Centralized configuration



Clinical deployment in MIM and VolumeTool

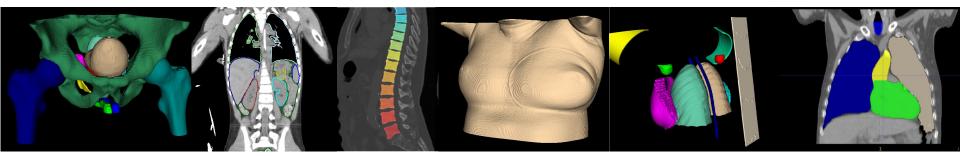
			•		Deeplearning launcher							*
#				Deeplearni	Deeplearning network				Image			
Sessions Plans G Export		~	CT: Body				CT: Lowres MRCAT Pelvis, 2023-10-18 14:18:58					
Current Sessions (0)		CT: Brein					MR: Source Pelvis MRCAT F, 2023-10-18 14:12:42					
				CT: Kind Abdomen	1			MR: Source Pelvis MRCAT IP, 2023-10-18 14:12:42 MR: Source Pelvis MRCAT W, 2023-10-18 14:12:42				
Saved By: Status:				CT: KNO								
				CT: Long								
		Modality		CT: Mamma								
18 Oct, 2023	-	MR		CT: Mamma Loco								
		MR		CT: Oesophagus								
		MR		CT: Prostaat								
		MR		MR: Bekken								
	1	MR		MR: Cervix Brachy								
	1	MR		MR: Prostaat								
	-	MR		MR: Rectum								
		ст								_		
		3.53					Launch D	L Close		* 📲	DLs launched successfi	ully
		MR								DI		
L		MR	42	RT MRI s T2 TSE	201	14:01:41					ssfully launched:	
										MR: Rectu	m	
									_			
					19			OK		ОК		

DL Auto segmentation dashboard, a.k.a. PMS

Post-market surveillance (PMS) is a collection of activities that the manufacturer must perform to monitor the safety and performance of the device it sells.

Random remarks from practice

- 1. Clinical software must be **MDR compliant**: You cannot choose a new platform/package for every task.
- 2. Hardly any changes in workflow if coming from atlas based segmentation. RTT's & doctors are used to review the segmentations & correct them.
- 3. Segmentation networks need **maintenance** (imaging, setup, etc.)
- 4. Trained networks are not very robust for changes in acquisition settings.
- 5. As RT department 1000's of treated patients = **very valuable data** Images, delineations, dose and planing files. Keep them accessible.



Some numbers from our department

• First clinical DL segmentation: July 2019 (prostate on MR (MRCAT) images)

 \Rightarrow See presentation of Geja

- Based on DeepMedic (no software updates for three years, 👍 , 👎)
- Networks need maintenance! Some networks already in 3rd iteration

Deep learning core team of the Computational Imaging Group for MRI Therapy & Diagnostics

Matteo Maspero Assistant Professor

Maarten Terpstra Postdoc

Flavio Meliado PhD

Nico van den Berg Professor

Mark Savenije Computer Scientist

Credits

AI LAB FOR IMAGING AND IMAGE-GUIDED INTERVENTIONS

Matteo Maspero (+ misc. slides) Gijsbert Bol (+ slides MDR/QMS) Alexis Kotte Geja Schimmel-de Kogel Gonda Sikkes Nico van den Berg Flavio Meliado Anette Houweling Mariëlle Philippens Wietse Eppinga Patricia Doornaert

Thank you for your attention online presentation https://tinyurl.com/CZE-March24

